Unit 1	Analysing and displaying data	
Intention To develop essential statistical skills for understanding, analysing, and graphically representing data		
Key words mode, median, range, grouped data, quantitative, qualitative, primary, secondary		
Study	https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria	R	Α	G
I can calculate mean, median, mode and range from a data set			
I can calculate the median from a frequency table			
I can calculate the mean from a grouped frequency table			
I can find the modal class from a grouped frequency table			
I can compare and interpret data in different contexts			
I can draw and interpret line graphs			
I can draw and interpret bar charts			

Unit sequence	Top career
	Game Theory Analyst
 Mode, median and range Displaying data Grouping data Averages and comparing data Line graphs and more bar charts 	Studies strategic interactions, using mathematical models to optimise decisions in competitive environments. Salary
o. Ellic graphs and more bar orians	£90,000 - £150,000+ per year

Useful links	YouTube channels
https://www.sparxmaths.uk/	@ExamSolutions_Maths
https://sites.google.com/langdonpark.org/maths	@1stClassMaths
https://www.1stclassmaths.com/edexcelrevision	@mathsgenie7808
https://www.mathsgenie.co.uk/	@corbettmaths
https://corbettmaths.com/	@mathsmadeeasy123
https://mmerevise.co.uk/gcse-maths-revision/	@TheGCSEMathsTutor
https://www.thenational.academy/pupils/years/	@Cognitoedu
https://www.maths4everyone.com/	@DrFrostMaths

Be Inclusive

David Blackwell (1919–2010) was a pioneering Black mathematician and statistician. He made major contributions to game theory and created the "Blackwell algorithm" which improved computer decision-making and influenced many fields, including finance and genetics.

Unit 2	Number skills	
Intention	To build confidence in number skills, including mental maths, operations, practical applications, and understanding number properties for problem-solving and reasoning.	
Key words	Key words negative numbers, factors, multiples, primes, and square numbers	
Study	https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria			G
I can solve mental maths problems, choosing the most efficient strategies			
I can add and subtract large numbers, both with and without a calculator			
I can multiply and divide using written methods and apply to real-world problems			
I can use addition, subtraction, multiplication, and division in money problems			
I can compare, add, and subtract positive and negative numbers on a number line			
I can identify factors and multiples of numbers, and recognise prime numbers			
I can recognise, recall, and calculate square numbers up to 15²			

Unit sequence	Top career
1. Mental maths	Cryptographer
2. Addition and subtraction3. Multiplication	Designs secure encryption methods for data
4. Division	protection, used by governments, banks, and tech companies.
5. Money and time	'
6. Negative numbers	Salary
7. Factors, multiples and primes8. Square numbers	£50,000 - £150,000+ per year

Useful links	YouTube channels
https://www.sparxmaths.uk/	@ExamSolutions_Maths
https://sites.google.com/langdonpark.org/maths	@1stClassMaths
https://www.1stclassmaths.com/edexcelrevision	@mathsgenie7808
https://www.mathsgenie.co.uk/	@corbettmaths
https://corbettmaths.com/	@mathsmadeeasy123
https://mmerevise.co.uk/gcse-maths-revision/	@TheGCSEMathsTutor
https://www.thenational.academy/pupils/years/	@Cognitoedu
https://www.maths4everyone.com/	@DrFrostMaths

Be Inclusive

Elizebeth Smith Friedman (1892–1980) was a groundbreaking female American cryptographer who cracked enemy codes during both World Wars, pioneering modern cryptography and setting the stage for future cryptographers, especially women.

Unit 3	Expressions, functions and formulae	
Intention	Intention To build confidence in recognising, simplifying, expanding, and solving algebraic expressions and equations, enabling students to model scenarios algebraically	
Key words terms, expressions, equations, formulae, factorise, expand, rearrange, balancing		
Study	https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria		Α	G
I can recognise terms, expressions, equations, and formulae			
I can identify and collect likes terms to simplify algebraic expressions			
I can expand and simply algebraic terms and expressions			
I can factorise terms and expressions			
I can use the balancing method to solve linear equations			
I can use the balancing method to rearrange formulae			
I can express a scenario algebraically using terms and expressions			

Unit sequence	Top career
1. Functions	Quantitative Analyst (Quant)
2. Simplifying expressions 13. Simplifying expressions 2	Uses algebra to develop financial models, optimise trading strategies, and assess market risks.
4. Writing expressions5. Substituting into formulae	Salary
6. Writing formulae	£120,000 - £200,000+ per year

Useful links	YouTube channels
https://www.sparxmaths.uk/	@ExamSolutions_Maths
https://sites.google.com/langdonpark.org/maths	@1stClassMaths
https://www.1stclassmaths.com/edexcelrevision	@mathsgenie7808
https://www.mathsgenie.co.uk/	@corbettmaths
https://corbettmaths.com/	@mathsmadeeasy123
https://mmerevise.co.uk/gcse-maths-revision/	@TheGCSEMathsTutor
https://www.thenational.academy/pupils/years/	@Cognitoedu
https://www.maths4everyone.com/	@DrFrostMaths

Be Inclusive

Bhāskara II (1114–1185), an Indian mathematician, excelled in algebra, writing the influential *Bijaganita* text. His pioneering techniques in solving complex algebraic problems greatly influenced the development of modern mathematics.

Unit 4	Decimals and measures	
Intention To build confidence in recognising, simplifying, expanding, and solving algebraic expressions and equations, enabling students to model scenarios algebraically		
Key words	Key words decimals, decimal points, significant figures, nearest, metrics, units, mass, capacity	
Study	Study https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria		Α	G
I can round decimals to a specified decimal place accurately			
I can measure and convert between units of length, mass, and capacity			
I can interpret and use scales accurately on measuring tools			
I can perform mental calculations with decimals in different contexts			
I can add, subtract, multiply, and divide decimals confidently			
I can calculate the perimeter of various 2D shapes			
I can calculate the area of rectangles, triangles, parallelograms and trapeziums			

Unit sequence	Top career
 Decimals and rounding Length, mass and capacity Scales and measures Working with decimals mentally Working with decimals Perimeter Area 	Metrologist Ensures precise measurements in length, mass, temperature, calibrates instruments, and maintains standards for accuracy in various industries. Salary £50,000 - £70,000+ per year

Useful links	YouTube channels
https://www.sparxmaths.uk/	@ExamSolutions_Maths
https://sites.google.com/langdonpark.org/maths	@1stClassMaths
https://www.1stclassmaths.com/edexcelrevision	@mathsgenie7808
https://www.mathsgenie.co.uk/	@corbettmaths
https://corbettmaths.com/	@mathsmadeeasy123
https://mmerevise.co.uk/gcse-maths-revision/	@TheGCSEMathsTutor
https://www.thenational.academy/pupils/years/	@Cognitoedu
https://www.maths4everyone.com/	@DrFrostMaths

Be Inclusive

Dr. George Robert Carruthers (1939–2020) was a pioneering Black physicist and inventor who developed precise measurement instruments for NASA, including an ultraviolet camera used on Apollo 16, advancing space exploration technology.

Unit 5	Fractions and percentages	
Intention	Intention To build confidence in comparing, simplifying, and calculating with fractions, decimals, and percentages, and solve real-world problems effectively.	
Key words	Key words percent, fraction, numerator, denominator, lowest common multiple	
Study	https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria		Α	G
I can compare fractions and determine which is larger or smaller			
I can simplify fractions to their lowest terms			
I can add, subtract, multiply, and divide fractions accurately			
I can convert between fractions and decimals confidently			
I can explain the relationship between fractions, decimals, and percentages			
I can calculate percentages of given amounts accurately			
I can solve real-world problems using fractions, decimals, and percentages			

Unit sequence	Top career
Comparing fractions	Financial analyst
2. Simplifying fractions3. Working with fractions	Evaluates investment opportunities, using fractions and percentages to analyse financial data precisely.
 Fractions and decimals Understanding percentages 	Salary
6. Percentages of amounts	£70,000 - £200,000+ per year

Useful links	YouTube channels
https://www.sparxmaths.uk/	@ExamSolutions_Maths
https://sites.google.com/langdonpark.org/maths	@1stClassMaths
https://www.1stclassmaths.com/edexcelrevision	@mathsgenie7808
https://www.mathsgenie.co.uk/	@corbettmaths
https://corbettmaths.com/	@mathsmadeeasy123
https://mmerevise.co.uk/gcse-maths-revision/	@TheGCSEMathsTutor
https://www.thenational.academy/pupils/years/	@Cognitoedu
https://www.maths4everyone.com/	@DrFrostMaths

Be Inclusive

Nobuhiro Kiyotaki (born 1955) is a Japanese economist known for the Kiyotaki-Moore model, which explains how credit cycles affect economic growth. His work has shaped finance and economic policy worldwide.

Unit 6	Probability	
Intention To develop understanding of probability language, calculations, and experimental methods, and to predict and interpret expected outcomes in various contexts.		
Key words	Key words event, outcome, scale, expected frequency, theoretical, experimental, predict	
Study	https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria		Α	G
I can describe events using the language of probability			
I can calculate the probability of single events accurately			
I can calculate the probability of single events in different contexts			
I can conduct probability experiments and record results systematically			
I can compare experimental results to theoretical probabilities			
I can predict expected outcomes based on probability calculations			
I can interpret probability results and apply them to real-life scenarios effectively			

Unit sequence	Top career
	Risk analyst
 The language of probability Calculating probability More probability calculations Experimental probability Expected outcomes 	Assesses potential risks for companies, using probability to predict and manage financial uncertainties. Salary £70,000 - £100,000+ per year

Useful links	YouTube channels
https://www.sparxmaths.uk/ https://sites.google.com/langdonpark.org/maths https://www.1stclassmaths.com/edexcelrevision https://www.mathsgenie.co.uk/ https://corbettmaths.com/ https://mmerevise.co.uk/gcse-maths-revision/ https://www.thenational.academy/pupils/years/ https://www.maths4everyone.com/	@ExamSolutions_Maths @1stClassMaths @mathsgenie7808 @corbettmaths @mathsmadeeasy123 @TheGCSEMathsTutor @Cognitoedu @DrFrostMaths

Be Inclusive

Sharon Bowen (born 1962) is a prominent Black financial expert and risk analyst, known for her leadership in financial services, serving on boards and advocating for diversity in finance.

Unit 7	Ratio and proportion	
Intention	To develop understanding of ratios, proportions, and fractions, enabling effective writing and application of these concepts in real-world situations.	
Key words	vords direct, inverse, unitary, proportionality, ratios, parts	
Study	https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria	R	Α	G
I can identify and calculate direct proportion in various contexts			
I can write and simplify ratios accurately			
I can use ratios to compare quantities effectively			
I can convert between ratios, proportions, and fractions in different contexts			
I can calculate percentages based on given proportions			
I can apply ratios and proportions to solve complex mathematical problems			
I can identify inverse proportion in various contexts			

Unit sequence	Top career
	Market Research Analyst
 Direct proportion Writing ratios Using ratios 	Uses ratios and proportions to interpret consumer data, identify market trends, and evaluate competition.
4. Ratios, proportions and fractions5. Proportions and percentages	Salary
o. Troportions and porsontages	£55,000 - £85,000+ per year

Useful links	YouTube channels
https://www.sparxmaths.uk/	@ExamSolutions_Maths
https://sites.google.com/langdonpark.org/maths	@1stClassMaths
https://www.1stclassmaths.com/edexcelrevision	@mathsgenie7808
https://www.mathsgenie.co.uk/	@corbettmaths
https://corbettmaths.com/	@mathsmadeeasy123
https://mmerevise.co.uk/gcse-maths-revision/	@TheGCSEMathsTutor
https://www.thenational.academy/pupils/years/	@Cognitoedu
https://www.maths4everyone.com/	@DrFrostMaths

Be Inclusive

Angela Lee Duckworth (born 1970) is a prominent psychologist and market researcher known for her work on grit, founding Character Lab, which enhances educational outcomes and influences talent development strategies in business and education

Unit 8	Lines and angles	
Intention	To understand and apply angle facts, including angles on a straight line, around a point, and in triangles and quadrilaterals, to solve geometric problems and justify reasoning.	
Key words	parallel, perpendicular, quadrilateral, interior, exterior, alternate, corresponding	
Study	https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria	R	Α	G
Identify and name different types of angles			
Measure angles accurately using a protractor			
Use angle rules on a straight line and around a point			
Apply angle facts in triangles and quadrilaterals			
Identify and use vertically opposite angles			
Use angle rules with parallel lines and a transversal			
Justify answers using correct mathematical reasoning and terminology			

Unit sequence	Top career
 Measuring and drawing angles Lines, angles and triangles Drawing triangles accurately Calculating angles Angles in a triangle Quadrilaterals 	Architect Designs buildings using creativity and maths to create safe, functional, and attractive spaces. Salary £30,000 - £150,000+ per year

Useful links	YouTube channels
https://www.sparxmaths.uk/	@ExamSolutions_Maths
https://sites.google.com/langdonpark.org/maths	@1stClassMaths
https://www.1stclassmaths.com/edexcelrevision	@mathsgenie7808
https://www.mathsgenie.co.uk/	@corbettmaths
https://corbettmaths.com/	@mathsmadeeasy123
https://mmerevise.co.uk/gcse-maths-revision/	@TheGCSEMathsTutor
https://www.thenational.academy/pupils/years/	@Cognitoedu
https://www.maths4everyone.com/	@DrFrostMaths

Be Inclusive

Zaha Hadid (1950 - 2016) was a groundbreaking architect known for her futuristic, flowing designs. She combined creativity with engineering to create iconic buildings like the London Aquatics Centre and Guangzhou Opera House, inspiring architects around the world with her bold vision.

Unit 9	Sequences and graphs	
Intention	To recognise, describe, and generate sequences, including linear and non-linear patterns, including representing the Nth term of a linear sequences algebraically	
Key words	Sequence, term, term-to-term, position-to-term, linear, non-linear	
Study	https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria	R	Α	G
Identify term-to-term and position-to-term rules in sequences			
Generate terms in a linear sequence using a word rule			
Recognise and describe patterns in non-linear sequences			
Find the nth term of a linear sequence algebraically			
Draw and extend a sequence by recognising patterns			
Use algebraic reasoning to determine whether a tern is in a sequence			
Represent a sequence graphically and recognising the mathematical relationship			

Unit sequence	Top career		
4 0	Data Analyst		
 Sequences Pattern sequences Coordinates and midpoints Extending sequences 	Uses statistics, sequences, and graphs to help businesses make informed decisions based on evidence		
5. Straight-line graphs	Salary		
6. Position-to-term rules	£55,000 - £85,000+ per year		

Useful links	YouTube channels
https://www.sparxmaths.uk/	@ExamSolutions_Maths
https://sites.google.com/langdonpark.org/maths	@1stClassMaths
https://www.1stclassmaths.com/edexcelrevision	@mathsgenie7808
https://www.mathsgenie.co.uk/	@corbettmaths
https://corbettmaths.com/	@mathsmadeeasy123
https://mmerevise.co.uk/gcse-maths-revision/	@TheGCSEMathsTutor
https://www.thenational.academy/pupils/years/	@Cognitoedu
https://www.maths4everyone.com/	@DrFrostMaths

Be Inclusive

Gladys West (born 1930) is an African American mathematician whose work in modelling the Earth's surface and analysing satellite data contributed to the development of GPS technology.

She used complex graphs, data, and sequences in her calculations.

Unit 10	Transformations	
Intention	To understand and accurately perform translations, reflections, rotations, and enlargements on 2D shapes, using coordinates, vectors, and scale factors	
Key words	translation, reflection, rotation, enlargement, centre, scale factor, column vectors	
Study	https://sites.google.com/langdonpark.org/maths/study/key-stage-3	

Success criteria	R	Α	G
Translate shapes using vector notation			
Reflect shapes across horizontal, vertical, and diagonal lines			
Rotate shapes around a given point and angle			
Enlarge shapes using a positive scale factor and centre of enlargement			
Enlarge shapes using a negative scale factor and centre of enlargement			
Perform and describe a combination of transformations			
Use mathematical vocabulary to describe transformations			

Unit sequence	Top career		
	Graphic Designer		
 Congruency and enlargements Symmetry Reflection 	Uses transformations like reflection, rotation, and scaling to create visually appealing layouts, logos, and digital content		
Rotation Translations and combined transformations	Salary		
C. Translations and somblined transformations	£30,000 - £100,000+ per year		

Useful links	YouTube channels
https://www.sparxmaths.uk/ https://sites.google.com/langdonpark.org/maths	@ExamSolutions_Maths @1stClassMaths
https://www.1stclassmaths.com/edexcelrevision	@nstolassivatiis @mathsgenie7808
https://www.mathsgenie.co.uk/	@corbettmaths
https://corbettmaths.com/	@mathsmadeeasy123
https://mmerevise.co.uk/gcse-maths-revision/	@TheGCSEMathsTutor
https://www.thenational.academy/pupils/years/	@Cognitoedu
https://www.maths4everyone.com/	@DrFrostMaths

Be Inclusive

Jessica Walsh (born 1986) is a renowned graphic designer and art director. Her innovative work often involves geometric transformations to create dynamic visual compositions across branding and digital media.